mySOAP_0010.DOC

R R

Lecture 1: | Introduction to SOAP ‘

SOAP: Simple Object Access Protocol

Let’s put some network between the object and us, then create a thing called a “SOAP
client”. A SOAP client is called a client, not because it is used by some end-user human,
but just because it creates a thing called a “SOAP request document”. In fact, most
SOAP clients are applications or servers. This SOAP request document is sent over the

network, usually over HTTP, to a piece of code called a “SOAP server”.

COM Object

S
~
S
~.

Web Server

Request

Response

An example of a SOAP request document is shown in following:
SOAP Request Document.

POST /getWeather HTTP/1.1

Host: www.weather.com

Content-Length: 244

Content-Type: text/xml

SOAPAction: http://myweather.com/services#getWeather

<soap:Envelope
xmins:soap= “http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<getWeather xmins= “urn:schemas-architag-com:weather”>
<zipcode>80112</zipcode>
<temp>F</temp>
<wind>MPH</wind>
</getWeather>
</soap:Body>
</soap:Envelope>

mySOAP_0010.DOC

B 2R

Why use HTTP? There are several reasons. (1) The most important is that the HTTP

infrastructure already exists. There are Web servers in every organization already, and

HTTP has already proven to work well across networks. (2) The second reason is that it

uses the standard HTTP port of any TCP conncection, prot 80. This port is wide open in

most organizations, because organizations want their employees to be able to access

resources on the Web.

This document is sent form the SOAP client to the SOAP server, where the SOAP
server must parse it out and find the appropriate elements. Then, the SOAP server must
tell the object, in its language, what to do. When the object speaks back, the SOAP
server must translate that and return the results to the SOAP client.

However it gets the information from the object, it is the SOAP server’s job, then, to
encapsulate this information into a thing called a SOAP response document and send it
back to the SOAP client. The following is a SOAP Response Document:

HTTP/ 1.1 200 OK
Content-Type: text/xml
Content-Length: 367

<soap: Envelope
xmins:soap= “http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<forecast
xmins="http://weather.com/schemas/getweather.xsd”>
<day name="2002-04-05">
<high>78</high>
<low>44</low>
<wind>5</wind>
</day>
<day name="2002-04-06">
<high>78</high>
<low>44</low>
<wind>5</wind>
</day>
</forecast>
</soap:Body>
</soap:Envelope>

mySOAP_0010.DOC

B 2R

[Demo] mySOAP_0010.xml 2 mySOAP_0011.xml:
(% 7 > 1if 1% validation > #-F * 17 SOAP Schema £ { % % _SOAPSchema.xsd)

Notice that the SOAP response document is also an HTTP document.

SOAP provides a simple methodology for getting some procedure call package over
HTTP to a destination. However, we think that SOAP has two distinct personalities.
Both of these personalities use the exact same specification and the same methodology
for getting a payload form one location to antoher. However, you should understand
these two personalities of SOAP, because how you handle the SOAP documents may
vary widely. The two personalities are:

B SOAP for RPC

B SOAP for Messaging

Using SOAP for RPC, the payload inside of the SOAP document is usually short, and
the response is immediate. This is called “synchronous”. The suggestion is that “I need

a piece of information from you now, and I will wait until you give it to me.”

Using SOAP for messaging usually requires more handshaking, because the results
might not come back right away. In this way, SOAP for messaging is ususally
“asynchronous.” The suggestion here is , “Here is a purchase order. Let me know if you

received it, and tell me in the next couple days if you can deliver the goods.”

\SOAP RPC Conventionl

When RPC calls are serialized in a SOAP message, the name of the element must

match the name of the method, as do the parameters.

Consider the method signature:
//Return the current stock price, given the company symbol
double GetStockQuote ([in] string sSymbol);

If our method namespace is http:/www.wroxstock.com/, then the serialized method call

that requests the stock quote using symbol QU872 would look like this:

mySOAP_0010.DOC

R R

<q:GetStockQuote xmlIns:q= http://www.wroxsotck.com/ >

Method ¢ - 7 <q:sSymbol xsi:type="xsl:string”>0U812</q:sSymbol>

</q: GetStockQuotq’\

A 2 s s
% Method #73 % A S S8 S
o
The method n —s does the parameter. While the parameter

names match the child elements, only inbound parameters appear in the serialized call.

The Return

As we mentioned earlier, the RPC convention uses a request-response model. Just as
the call is represented in the request SOAP message, the results of the call are returned
in the reponse SOAP message.

The name of the method response struc can be anything, but it is a convention to
append the word “Response” to the name of the method call sturct. If the method returns
a value, the name is irrelevant, but it must be the first child of the method sturct.

(# ¢ # tagname -’ #-% - B childnode PiE4R 5 ¥ & & return value)

Return values cannot be identified by name, only position, but the name should not

confilct with the parameters of the method.

// Reverse the string, s, and return the new string.

string ReverseString ([in] string s);

// Reverse the string, s, and return the new string.

void Reverse ([in] sting s, [out] string sSRev);
// Reverse the string, s, passed in by reference.

void ReverseString ([in, out] string §);

The first version:

<ReverseStringResponse xmlIns:x= http://www.wrox.com/ >

x:ret xsi:type= “xsd:string”>THOR</x:ret>

</x:ReverseString>

(1) method % i
(2) ¥ p 7 element name > ¥] 3 /& subrouitne ¥ % F £ parameter ¥ & > 2 F]

v ¢ return- . % E& K% - B child element g ﬁkr‘i’\ﬁ return value > & §_

mySOAP_0010.DOC

B 2R

elementname -F ¥ % £ & o

The second version:
<ReverseStringResponse xmlIns:x= http://www.wrox.com/ >
x:sRet xsi:type= “xsd:string”>THOR</x:sRet>

</x:ReverseString>

(1) method % i
(2) % FP~= sRev ¥z v A v @ $d(F + pointer, or refenence)

The third version:
<ReverseStringResponse xmlIns:x= http:/www.wrox.com/ >
x:s xsi:type= “xsd:string”>THOR</x:s>

</x:ReverseString>

(1) method % i
(2) P-= 50 Fla v Ay @ S 4c(5 & pointer, or refenence)

% - B tools # © B F % = 1 functions i = request SOAP message/

response SOAP message °

[Demo] xmlServer01/ xmiClient01 @ &

WebServerProject02.exe/ myBrowserProjectO1.exe

mySOAP_0010.DOC

B 2R

Lecture 2: [Structure of a SOAP Message |

— ~ Stucture of a SOAP Message

<SOAP:Envelope xmins:SOAP="http://schemas.xmlsoap.org/soap/envelope/" >
<SOAP:Header>

</SOAP:Header>
<SOAP:Body>

</SOAP:Body>
</SOAP:Envelope>

— - SOAP fi*[&ify] -

For example, you could use the Header to process an order.

1. Original client request:

<SOAP:Envelope xmiIns:SOAP="http://schemas.xmlsoap.org/soap/envelope/" >
<SOAP:Header>
<t:fillinID xmIns:t="http://www.scottseely.com/customer"
SOAP:mustUnderstand="1"
SOAP:actor="http://schemas.xmlsoap.org/soap/actor/next">
<t:bodylD>cust</t:bodyID>
</t:fillinID>

<u:placeOrder xmlIns:u="http://www.scottseely.com/po"
SOAP:mustUnderstand="1"
SOAP:actor="http://www.scottseely.com/placeOrder">
<u:bodylID>lineltems</u:bodyID>
</u:placeOrder>

<v:shipOrder xmIns:v="http://www.scottseely.com/po"
SOAP:mustUnderstand="1"

mySOAP_0010.DOC
B 2R
SOAP:actor="http://www.scottseely.com/shipOrder">
<v:bodyID>shipper</v:bodyID>
</v:shipOrder>

</SOAP:Header>

<SOAP:Body>
<customer ID="cust">
<name ID="custName" first="Joe" Last="Smith" />
<address id="custAddress">
<street>123 Main st.</street>
<city>Milwaukee</city>
<state>WI</state>
<zip>53219</zip>
</address>
</customer>

<order ID="lineltems">
<item>bat</item>
<item>glove</item>
<item>baseball</item>
</order>

<ship ID="shipper">
<shipBy>UPS Ground</shipBy>
<shipTo>
<name href="#custName" />
<address href="#custAddress" />
</shipTo>
</ship>

</SOAP:Body>

</SOAP:Envelope>

mySOAP_0010.D0C
AR 2Rl
2. Message gets passed to the order system

(http://www.scottseely.com/placeOrder)

<SOAP:Envelope xmins:SOAP="http://schemas.xmlsoap.org/soap/envelope/" >
<SOAP:Header>

<u:placeOrder xmlIns:u="http://www.scottseely.com/po"
SOAP:mustUnderstand="1"
SOAP:actor=" http://schemas.xmlsoap.org/soap/actor/next ">
<u:bodylD>lineltems</u:bodyID>
</u:placeOrder>

<v:shipOrder xmlIns:v="http://www.scottseely.com/po"
SOAP:mustUnderstand="1"
SOAP:actor="http://www.scottseely.com/shipOrder">
<v:bodylD>shipper</v:bodyID>
</v:shipOrder>

</SOAP:Header>

<SOAP:Body>
<customerlID ID="10233" />
<customer ID="cust">

<name ID="custName" first="Joe" Last="Smith" />
<address id="custAddress">
<street>123 Main st.</street>
<city>Milwaukee</city>
<state>WI</state>
<zip>53219</zip>
</address>
</customer>

<order ID="lineltems">
<item>bat</item>
<item>glove</item>
<item>baseball</item>
</order>

mySOAP_0010.DOC
B 2R
<ship ID="shipper">
<shipBy>UPS Ground</shipBy>
<shipTo>
<name href="#custName" />
<address href="#custAddress" />
</shipTo>
</ship>

</SOAP:Body>

</SOAP:Envelope>

The mustUnderstand Attribute

The mustUnderstand attribute specifies whether it is absolutely necessary for the
SOAP server to process the message in the header. A value of “1” indicates that the
header entry is mandatory, whereas a value of “0” indicates that the header entry is
optional. The <t:filllnID ...> header entry, we specified a value of “1” for
mustUnderstand. This means that the SOAP server must process the header entry. If the
SOAP server doesn’t understand this header entry, it must reject the entire SOAP

message- it is not allowed to process the entries in the SOAP body.

The actor Attribute

In some cases a SOAP message may pass through a number of applications on a
number of computers before it gets to its final destination. You might send a SOAP
message to computer A, which might then send that message on to computer B.
Computer A would be called a SOAP intermediary. In these cases you can specify that
some SOAP headers must be performed by a specific intermediary, by using the actor
attribute. The value of the attribute i1s a URI, which uniquely identifies each

intermediary. Or, if you want the header entry to be executed by the next intermediary in

the line, regardless of what computer it’s on, you can use the special URI defined in the

SOAP specification, http://schemas.xmlsoap.org/soap/actor/next .

Lecture 3: |Structure of'a SOAP Fault Message ‘

— ~ Stucture of a SOAP Fault Message

mySOAP_0010.DOC

B 2R

<SOAP:Envelope xmins:SOAP="http://schemas.xmlsoap.org/soap/envelope/" >

<SOAP:Header>

</SOAP:Header>

<SOAP:Body>
<SOAP:Fault>
<faultcode> ...</faultcode>
<faultstring>... </faultstring>
<detail>
</detail>
</SOAP:Fault>

</SOAP:Body>

</SOAP:Envelope>

— - SOAP fi*[&fy] -

For example, you could use the Header to process an order.

<soap:Envelope xmins:soap="http://schemas.xmlsoap.org/soap/envelope/" >

<soap:Body>
<soap:Fault>

<faultcode>soap:server</faultcode>
<faultstring>Insufficient funds</faultstring>

<detail>

<x:TransferError xmIns:x="http://www.Acer.com.tw">

<sourceAccount> 22-3415</sourceAccount>
<transferAmount>100.0</transferAmount>

10

</x:TransferError>
</detail>
</soap:Fault>
</soap:Body>
</soap:Envelope>

11

mySOAP_0010.DOC

B 2R

mySOAP_0010.DOC

B 2R

Lecture 4: |SOAP Encoding- Simple Data Types ‘

The SOAP Specificatin defines a single set of encoding rules that are referred to as
SOAP encoding. SOAP encoding is based on XML Schemas and as such it closely
models many of the standard types and constructs that developers would be familiar
with. The value of the encodingStyle attribute for SOAP encoding is

http://schemas.xmlsoap.org/soap/encoding/, which points to the XML Schema that defines the

encoding rules.
The SOAP Encoding consists of two parts: Simple Data Types and Compound Data
Types:

In SOAP encoding, simple types are always represented as single elements in the body.
SOAP encoding exposes all the simple types that are built into the XML Schemas
Specification. If we are using a simple type with SOAP encoding, then it must come

form XML Schemas, or be derived from a type that does.

— ~ Primitive Simple Data Type
if we assume the xsd prefix is associated with the XML Schemas URI, and the soapENC

prefix is associated with the SOAP encoding URI, then both of these paylaod values

work with strings.

<param1 xsi:type="xsd:string">0U21</param1> refers to XML Schemas:

<param?2 xsi:type="soapENC:string">0U22</param2> refers to SOAP encoding:

mySOAP_0050.xml

si:type attribute =g *

<soap:Envelope xmins:soap="http://schemas.xmlsoap.org/soap/envelope/"
soap:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<soap:Body>

<m:MixedMessage xml:m="http://www.ntou.edu.tw/" >

<param1 >0OU21</param1>
<param2 >1234</param2>

<param3>59.674</param3>

</m:MixedMessage>

12

mySOAP_0010.DOC
B R
</soap:Body>

</soap:Envelope>

That messae meets all the requirements of SOAP, but many implementations would not
be able to process it because they would not be able to map the values in the payload to
types in the target language. (¥ #& /% % payload ® 33 i% validation)

<soap:Envelope xmins:soap="http://schemas.xmlsoap.org/soap/envelope/"
soap:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmlins:xsd="http://www.w3.0rg/1999/XMLSchema"
xmlins:xsi="http://www.w3.0rg/1999/XMLSchema-instance" >

<soap:Body>

<m:MixedMessage xml:m="http://www.ntou.edu.tw/" >

<param1 xsi:type="xsd:string">0U21</param1>

<param?2 xsi:type="xsd:integer">1234</param2>

<param3 xsi:type=“xsd:double">‘§9.674</param3>

</m:MixedMessage> \

</soap:Body>

r [validation

</soap:Envelope>
Now all the data in the payload is identified by type, and it becomes much easier for a

SOAP implementation to process.
(4cfr 1% validation ?? ¥ XMLSPY @ 5 » }ata f&7 34388 - % valid !!)

~ Enumerations -

Here is an example of an enumeration that defines a set of geographical regions.
<simpleType name="Region” base="xsd:string”>

<enumeration value="North” />

<enumeration value="East” />

<enumeration value="South” />

<enumeration value="West” />

</simpleType>

13

mySOAP_0010.DOC
AR 2Rl
if this enumeration appeared in a referenced schema, we could then use this type in a
SOAP message.

<soap:Envelope xmins:soap="http://schemas.xmlsoap.org/soap/envelope/"
soap:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<soap:Body>

<m:GetSalesTotals xml:m="http://www.ntou.edu.tw/" >

<m:reg xsi:type="m:Region” >East</m:reg>

</m:GetSalesTotals>
</soap:Body>

</soap:Envelope>

= ~ Binary Data o

As part of the simple types it supports, SOAP and XML Schemas provide a type for
representing binary data. One approach for working with binary data is to use the
base64 type. We can represent binary data, such as an image file, as an array of bytes in
the message. The base64 type converts binary data to text using the bse64-encoding
algorithm of XML Schemas.

14

mySOAP_0010.DOC

R R

Lecture 5: [SOAP Encoding- Compound Data Types |

SOAP encoding handles two compound types: structs (records), and arrays.

— ~ Structs Type

Consider C++ struct definition of a super-hero:

Struct SuperHero

{
string sCodeanem;
string sFirstName;
string sLastName;
int nAge;

}3

SuperHero hero= {“Hulk”, “Bruce”, “Banner”, 32 }

If we serialize the variable “hero” into a SOAP message payload using SOAP encoding,
it would look like this:
<hero xsi:type="x:SuperHero”>

<sCodeName xsi:type="xsd:string”’>Hulk</sCodeName>

<sFirstName xsi:type="xsd:string”’>Bruce</sFirstName>

<sLastName xsi:type="xsd:string”>Banner</sLastName>

<nAge xsi:type="xsd:integer’>32</nAge>

</hero>

As can be seen in this example, the xsi:fype attribute is used on compound data types as
well as simple types. In this case, the type is x:SuperHero, and the x namespace would

point to a schema that represents out SuperHero struct.

— ~ Arrays Type

In SOAP encoding, arrays are considered a special type. This type is indicated by their
xsi:type attribute, which is SOAP-ENC:Array. As with all SOAP encoding, the

namespace associated with the Array type is http://schema.xmlsoap.org/soap/encoding.

Elements with this xsi:#ype are declared as SOAP encoding arrays.

15

mySOAP_0010.DOC
P R
The type of the array members is declared using another attribute,

SOAP-ENC:arrayType. This attribute indicates the type and size of the array.

<numbers xsi:type="SOAP-ENC:Array” SOAP-ENC:arrayType="xsd:integer[5]">
<item>10</item>
<item>20</item>
<item>30</item>
<item>40</item>
<item>50</item>

</numbers>

or
<names xsi:type="SOAP-ENC:Array” SOAP-ENC:arrayType="xsd:string[4]">
<e>John</e>
<e>Tom</e>
<e>Allen</e>
<e>Harry</e>

</names>

ffi"'] SOAP-ENC:ur-type[] {®=£%} universal type :
<mix xsi:type="SOAP-ENC:Array” SOAP-ENC:arrayType="SOAP-ENC:ur-type[4]”>
<e xsi:type="xsd:string”’>John</e>
<e xsi:type="xsd:integer”>7</e>
<e xsi:type="xs:string”>Allen</e>
<e xsi:type="xsd:data>1999</e>

</mix>

15| SOAP-ENC:offset =55 [isleflfoedp
<names xsi:type="SOAP-ENC:Array” SOAP-ENC:arrayType="xsd:string[4]”
SOAP-ENC:offset=[2]" >
<e>Allen</e>
<e>Harry</e>
</names>
P A[2] 2 A[B] Fixm g A[0] 2 A[l] #E Kk |

16

mySOAP_0010.DOC
AR 2Rl
f1*'] SOAP-ENC:position [HGEH[15 [fli5[[E7F] (sparse Matrix) :
<names xsi:type="SOAP-ENC:Array” SOAP-ENC:arrayType="xsd:string[100]” >
<e SOAP-ENC:position="[11]">Allen</e>
<e SOAP-ENC:position="[45]">Harry</e>

</names>
Fi@ AJLI] 2 A[45] H @ TR Y 24 @ig ok |

Q: Y[¥f— {7 SOAP ¥¥F| [%data validation ?

17

